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We consider a one-dimensional chain of coupled harmonic oscillators; the mass 
of each atom is a random variable taking only two values (M or 1). We 
investigate the integrated density of states H(~o 23 near special frequencies: a 
given frequency ~o, with rational wavelength becomes "special" if the mass 
ratio M exceeds a certain critical value M,. We show that H has 
essential singularities of the types H~g~exp( -C 1 [~o 2-o9~1-1/2) or 
exp(-C2 Ico2-~o21-~), according to the value of M and ' the  sign of (~02- o9~). 
The Lifshitz singularity at the band edge is analyzed in the same way. In each 
case, the constant C~ or C2 is evaluated explicitly and compared with a vast 
amount  of numerical work. All these exponential singularities are modulated by 
periodic amplitudes. The properties of the eigenfunctions with frequencies close 
to the special values are also discussed, and are illustrated by numerical data. 

KEY WORDS: Density of states; random harmonic chains; one-dimensional 
systems; special frequencies; Lifshitz singularities. 

1. I N T R O D U C T I O N  

The behavior of random one-dimensional harmonic chains has been 
studied intensively since the work of Dyson ll4) (see the review by Lieb and 
Mattis~5)). An important contribution was also made by Dean, (163 who 
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performed a numerical calculation of the spectral density of binary har- 
monic chains. He found two outstanding features: the spectral density has 
"high values" at frequencies connected to islands of light particles embed- 
ded in a sea of heavy ones, whereas it "vanishes" at certain "special fre- 
quencies." 

The first feature was recently studied by Nieuwenhuizen and Luck, (11) 
extending an argument of Halperin/17/ The outcome is that the "high 
values" are actually infinitely high, since the integrated spectral density is 
only H61der-continuous, with an exponent 2c~ less than unity. The values of 
frequency where this happens form a dense set in a high-frequency interval 
when the mass ratio M and the fraction of light masses p obey a certain 
inequality. The power-law behavior of the integrated spectral density 
H(co 2) is multiplied by a periodic amplitude. Starting from the 
Dyson-Schmidt (2'14/ integral equation for the invariant function Z(u; (D 2) 
and from an identity relating H(o)~) - H(co 2) to the Z functions at ~0 2 and 
o)22, both the power law of H(co 2) and the periodic function were related to 
a similar behavior of the function Z(u, m2). In the present paper, we study 
analogous behavior in H(co 2) near the band edge and special frequencies. 

The occurrence of periodic functions, multiplying power-law or 
exponential singularities, is quite general in one-dimensional disordered 
systems with discrete distributions of the random variables. Examples are 
diffusion in a random medium 123/and the random field Ising model. (24) An 
even simpler was discussed by de Calan et al., (25) namely the study of the 
random variable, z = 1 + Xl + xl x2 + xl XzX3 + "" ', given the identically 
independently distributed x~. Also, the essential singularities of H(co 2) at 
special frequencies, including the well-known Lifshitz singularity at the 
band edge, have periodic amplitudes. 

Periodic functions also occur in approximate real-space renormal- 
ization group treatments of higher dimensional models, or, equivalently, on 
hierarchical lattices (see, for instance, Derrida et al.~27)). The study of these 
periodic functions is known to be a difficult mathematical problem. (28) 

The existence of special frequencies, where the integrated spectral den- 
sity has an exponential singularity, was explained by Matsuda (5) and 
Hori/6): a given frequency with rational wavelength becomes "special" if the 
mass ratio M of heavy and light particles exceeds a critical value Me, 
depending on the value of the frequency. This happens for the first time for 
M = 2. Then an infinity of special frequencies exist, which accumulate at 
the high-frequency band edge. For M = 3 a new set of special frequencies 
arises. If the mass ratio becomes infinite, all frequencies with rational 
wavelength are special. The integrated spectral density at those frequencies 
was derived by Domb et al. ~8) 

The nature of special frequencies is such that in no chain of the ensem- 
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ble can an eigenfrequency cross the special frequency if one varies, for 
instance, the value of M. Hence, the value of H(co z) at the special frequency 
co, calculated for M =  oo holds for all M~> M~.. The subject of the present 
paper, namely the behavior of the integrated spectral density H(0) 2) in the 
neighborhood of 0)~, has been a challenging problem for quite a while. 

In passing, we note that the band edge C0ma x is also a special frequency. 
Lifshitz (1~ gave a simple physical explanation for the existence of an 
exponential singularity in H ( 0 ) 2 m a x ) -  H(0) 2) = 1 - H ( 0 ) 2 ) .  Van Hemmen ~26) 
analyzed this behavior in the M =  oo case. He also noted a similar behavior 
around co=0; in fact, for M =  m all "rational" frequencies exhibit a 
singular behavior. We recall the argument of Lifshitz in Section 4.1 (it is 
the simplest case of a special frequency). For  a recent review of this and 
related points, see Simon. ~9) 

The authors of Ref. l l  also reported on the Lifshitz singularity. For  
0)2,, = COma • they found the behavior 

1 -H(0)2)mexp(-cx Iln Pl)P(x/l~) ( x ~  oo) (1.1) 

where c is a constant depending on the mass ratio, p is the probability for 
the occurrence of light masses, 

X = I(D 2 - -  0)21 -1/2 (1 .2 )  

P is a periodic function with unit period, and the scale # satisfies c# = 1. 
We shall show that a very analogous behavior to (1.1) is present to the 

right and the left of special frequencies inside the spectrum. The main dif- 
ference is that the probability p has to be replaced by the probability of 
occurrence of the relevant successions of one heavy and a certain number 
of light masses. A first attempt to do so was made by Ventevogel ~3) in the 
case 0) 2 < co 2. 

The case o 2 < 0  2 , M > M ,  turns out to be most interesting. 
Equation (1.1) remains valid (see Section 4.4), but now p has to be 
replaced by f ,  and 

x =  (0)2-  0)2) - '  (1.3) 

The factor c is again evaluated (Section 4.4). Also here a periodic 
amplitude is observed numerically. The same holds for the critical case 
( M =  M~; co ~- < co 2) (Section 4.3). There the exponent of x is again equal to 
-1/2, as in Eq. (1.2). 

The exponents - 1 / 2  and - 1  in Eqs. (1.2) and (1.3) were already 
reported in a note by Englisch, (22~ but no values for the constants c were 
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given. For a related model, a numerical calculation was performed by 
Gubernatis and Taylor. (~e/These authors, however, fitted both sides of the 
special frequency by a behavior of the form (1.1) (1.2). Our claim is that 
this is only correct at one side. 

Binary mass distributions therefore generate a quite complicated 
behavior of H(co2). For smoother distributions, such singularities do not 
occur, apart from the Lifshitz singularity at the band edge. ~29) This was 
indeed found to be the case for the exactly soluble models with exponential 
and gamma distributions. (2~ 

Regardless of whether or not the integrated density of states has a 
great deal of structure, thermodynamic quantities, such as the specific heat, 
are smooth functions of temperature. (261 A computation of the derivative of 
this quantity with respect to temperature was reported in Ref. 21, using a 
finite number of terms of the low-frequency expansion for the integrated 
density of states and the inverse localization length. For all models con- 
sidered in Ref. 21, dC/dT is a smooth function; only its global shape 
depends on the mass distribution. 

The setup of the paper is as follows. In Section 2, we give some general 
definitions and sketch the derivation of the Dyson-Schmidt integral 
equation. In Section 3, we discuss the phenomenon of special frequencies 
and investigate properties of the function Z(u; 092), which is a Cantor 
function at these frequencies. In Section 4, we present arguments that yield 
the exponents of Eq. (1.1) in the different cases co2 T 4 (Section 4.1), co2 ~cos 2 
(Section4.2), (o2],o)2, M=M, (Section4.3), and co~Tco 2, M>M~. (Sec- 
tion 4.4). The predictions are compared with a vast amount of numerical 
data, and the properties of eigenfunctions are analyzed in detail. 

2. BASIC DEFINIT IONS.  THE S C H M I D T  FUNCTION 

We consider a binary random harmonic chain with masses mn= 1 or 
m,,=M ( M >  1), which occur independently with probabilities p and 
q = 1 - p, respectively. The equation for an eigenfunction with frequency co 
is 

--mnco2an = a n +  1 q -  a n -  i - -  2an (2.1) 

We take fixed boundary conditions ao=aN+l=O. Equation (2.1) may be 
cast in the matrix form 

A,, = An_ 1 ~ Tm~An_ 1 (2.2) 
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where 

is the state vector, and T.,o is the transfer matrix. It is useful to diagonalize 
the matrix of the light masses Tt. The upper bound of the spectrum is 
co = 2, which is the largest eigenfrequency of a chain with only light masses. 
We define an angle fl (wave number) through 

co = 2 sin(�89 0~fl~<~z (2.3) 

Then the matrices 

U=(2isinfl)~/2( 1 --1) 
f i[3 _ g i f t  ; 

U_~=(2isinfl)_u2{ e ift - { )  
e i3 

diagonalize T~. We give the result for Ts ~ and T,~:  

0) r ~  =- U-]Tf-IU=(eo ift eift 

ZM]~ U - 1 T M ~ U  = Qft 

where Qft is given by 

Qft cos 7 - 

e - ift - ,~ i sin 7e ift'] 

i sin ?e-'ft e ift + i~ ] 

(2.4) 

(2.5a) 

(2.5b) 

(2.5c) 

The angle 7 is defined by 

tan 7 = ( M -  1) tan(�89 0 ~< 7 < x/2 (2.6) 

One easily verifies the relation 

Qft(z~ 1)j- ,  = Qjp (2.7) 

The basic variables in Eqs. (2.5)-(2.6) are 3 and 7, rather than M and 
co 2. Various other models, such as tight-binding models, I~) random alloy 
models, (2'3~ and systems equivalent to harmonic chains with negative ran- 
dom masses, (4) can be mapped onto the same set of transfer matrices. In all 
these models, special frequencies may appear for binary distributions of the 
appropriate random variables. 
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The eigenvalue problem can be studied by considering the ratios 
Y , , =  a , +  ~/a,, of the components of the vector A,. The ratio b + / b 2  of the 
two complex components of the vector B,, = U ~A, has unit length, and 
defines an angle q~, by 

ei~O" _ eil~Y n -- 1 a , +  1 
e i ~ y n _  1' Y, = - -  (2.8) 

an 

So the real Y. axis is mapped onto the unit circle. The action of the 
matrices (2.5) on q0, reads 

( 0 .  ~ = q ) .  - 2 f l  (rood 2re) 

= Rt~(~p,,) (mod 270 

where 

In the following, 

if mn= 1 (2.9a) 

if m, = M (2.9b) 

e , ~  - i s -  i~, + i s i n  7 e  i~ 
emt~(~l ~ (2.10) - i sin ?e iu' ifi q_ ei7 + ifl 

we shall always use the notation R(q)) for a M6bius trans- 
form like (2,10) related to a (2 x 2) matrix Q, such as in (2.5c). Although 
this notation is not fully correct, we denote the M6bius transform attached 
to QN by R u. We also note that prefactors in Q matrices, such as (cos 7) 
in Eq. (2.5c), drop out from the definition of the M6bius transform R. In 
particular, matrices ( + Q )  and ( - Q )  correspond to the same M6bius 
transform. In the following, we shall tacitly forget about the sign of Q 
matrices, and often write +__ Q instead of Q. 

The boundary conditions Y0 = oo and Yu + 1 = 0 are mapped onto 

q~ = 2fl; q~N+l = 0  (2.11) 

In order to study the integrated spectral density, we now briefly derive 
the integral equation of Dyson (~4) and Schmidt. (2) According to Eq. (2.1), 
the variable Y ,  = a , +  1/a ,  satisfies the recurrence relation 

Its distribution function 

satisfies 

Y , ~ = 2 - r n n 0 ) 2 - 1 / Y , ~  1 

Z n ( u )  = Prob{ Yn 1 < u} 

(2.12) 

(2.13) 

Zn(u)= pZn 1(2-o) 2 -  1/u) + qZ._ l(2-- M0) 2 -  1 / u ) -O ( -u )  + Z.(O) 

(2.14) 
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where 0 is the Heaviside step function, defined by O ( x ) =  1 for x > 0 and 0 
for x ~< 0. The integrated density of states H(~o 2) can be related to Z ( u )  at 
given 0)2: for a large but finite chain, H((o 2) is approximately equal to the 
number  of changes of sign in the sequence a ,  (1 ~< n ~ N), divided by N. In 
terms of the ratios Yn, H(co2) is just the fraction of negative Y,,. One 
therefore has with probabili ty one (or after averaging over the ensemble) 

H ( o  2) = Prob{ Y <  0} = Z(0) (2.15) 

where we already introduced the limit Schmidt function Z = lira, ~ ~ Z~. 
Combining (2.14) and (2.15), we find for n --* oo 

Z ( u )  = p Z ( 2  - co 2 - 1 /u )  + q Z ( 2  - Moo  2 - l / u )  - O( - u)  + H(co 2) (2.16) 

This equation can also be mapped onto the unit circle. The variables q0 
and u are related by [see Eqs. (2.8), (2.13)] 

c i ~ -  U c i f l _  ei~ ifl 
e '~ - - - ;  u = (2.17) 

e - ~ - u 1 - e~~ 

and the quantity 

V(~o) ~_ Z ( u ( ~ o ) )  (2 .18)  

is a monotonic function on [0; 27r] satisfying V(0) = 0, V(2~) = 1. It obeys 
the relation 

V ( q ~ ) = p V ( ( p - 2 f l ) + q V ( R e ( ~ o ) ) - I ( O < c p < 2 f l ) + H ( c o  2) (2.19) 

Here I is the characteristic function of an interval: 

I(qoo < qo < q01) = 1, (po < ~o (mod 2~) < ~pl 

= 0, elsewhere (2.20) 

3. AT  A SPECIAL F R E Q U E N C Y  

In this section, we briefly review the argument of Matsuda (5~ and 
Hori ~6~ explaining the existence of special frequencies. We also consider 
some aspects of the function Z(u), which is the distribution function of a 
Cantor  set for these frequencies. 

Let us recall an old conjecture of Saxon and Hutner,  (7) which was 
proven by Luttinger. (8) Suppose that one has pure crystals of A-type atoms, 
B-type atoms ..... Then the forbidden frequencies that are common to pure 
A, B .... crystals are also forbidden in an arbitrary substitutional alloy con- 
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sisting of A, B,..., and if there is a gap near a frequency forbidden to A, B,..., 
then also the composite lattice has a gap near that frequency. This 
argument also holds for ordered lattices formed by infinite repetitions of 
constituent parts of a (not necessarily disordered) composite lattice. This 
theorem was applied to special frequencies in the random mass chain by 
Hori Is~ and Matsuda~6); we now follow their argument; see Eq. (8.9). 

In our random lattice, the constituent parts may be chosen to be the 
subsequences of one heavy and an arbitrary number of light masses, to be 
denoted by HL ~- 1 (a = 1, 2,..., oo). For a given value of a, the periodic 
chain (HL"-~)~  has a finite number of gaps, corresponding to values of co 
such that the M6bius transform R,~ is hyperbolic. This follows from (2.7) 
and our convention that R,~ is the M6bius transform associated with Qa~. 
The reason is that, if n is lowered, the phase q), starts from q~N+l = 0 [see 
(2.11 )] and moves toward the attracting fixed point of Ri~. Then it cannot 
satisfy the second boundary condition q~o = 2/3, implying that the present 
frequency is not an eigenfrequency of the chain. 

This already implies that any inhomogeneous chain that would not 
have more than L successive light masses would have gaps near special fre- 
quencies. The width of these gaps vanishes as L ~ o% and hence the ran- 
dom chain under consideration has no (finite) gap in its spectrum. The 
essential singularities of H(co 2) at special frequencies can therefore be 
viewed, in a heuristic way, as infinitesimal versions of Saxon and Hutner's 
gaps. 

Throughout the following, a M6bius transformation with real coef- 
ficients is called hyperbolic if it has two distinct real fixed points, parabolic 
if it has one single real fixed point (with a derivative + 1), and elliptic if its 
two fixed points are complex conjugate. It turns out that the matrices R ~  
(a = 1, 2,...) can only be hyperbolic or parabolic if/~/rc is rational: 

/3 = 7z( l -  k )/l (3.1) 

with l and k integer (1 ~< k ~< l -  1), and mutual prime. In this situation, a 
sequence of l light particles leaves the phase invariant (rood 2~) and 
Rl~+tt/~ = R,/3. Thus, we only need to satisfy the condition 

cos(7 + a/3) >~ 1, a = 1 ..... 1 (3.2) 
cos y 

Let us define for future use the integers a(n) by 

n = a ( n ) ( l - k )  (modl),  l <.n<.l; l <~a(n)<.l (3.3) 
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which exist in virtue of Bezout's identity for mutual primes, and also 

2 = zr/l (3.4) 

One has a(l )=l ,  a ( l - k ) =  l, and for k =  1, a ( n ) = l - n .  Equation (3.2) is 
always satisfied for a =l .  For a =  1 ..... I - 1  it is satisfied provided it is 
satisfied for a(1). This requires in the present situation 

cos(7 + 2) ~< - cos  7 (3.5) 

o r  

,//> v~.- �89 - Ul)  (3.6) 

From (2.6) follows the equivalent condition that, at given k and l, the mass 
ratio exceeds the critical value M~: 

M >~ M c = 1 + tan(k~/2l) cotan(~/2l) (3.7) 

A frequency co is called a special frequency co, if both (3.1) and 
(3.6)-(3.7) are satisfied. In order to show that for no chain in the ensemble 
can this frequency be an eigenfrequency, Matsuda (5) and Hori (6~ considered 
the location of the fixed points of the transformations Rn~. (n = l,..., l). They 
are given by 

~9 +-(c~) ~ 6_+_ v(6), c~ : 2,..., n2 (3.8) 

where v(6) is defined by 

cos v(6) = sin(7 + $)/sin 7, O < ~ v ( 6 ) ~  (3.9) 

It satisfies 0 ~< v(6) <~ 6 when ~ - 27 ~< 6 ~< ~. Note that for n = l there is only 
one fixed point ~,+-(~)= 0, because RI;. is parabolic. Since dO-($)/dg)< O, 
the attracting fixed points ~ (n2) lie in the segment S =  [0; ~ - (2 ) ] .  We 
call S the sink interval. It has no overlap with the region [~+(2) ;2~] ,  
where the repelling fixed points ~, +(n2) are located. Figure 1 illustrates the 
discussion. 

The transformation Rt;. = Ro always attracts the phase in the clockwise 
direction; also, the other Rn;. keep the phase in S if it was there initially. 
Hence, the phase, starting from ~ox+~= 0, will remain trapped in the sink 
interval S. Therefore, the boundary condition on the left end of the chain, 
~0 o = 2~q, cannot be satisfied for any sequences {Ra~ ..... R~,,,}. Hence, for no 
chain in the ensemble (having a heavy mass at one of the ends) is the fre- 
quency under consideration an eigenfrequency. This is the theorem of Hori 
and Matsuda. 
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I~/I 

/ - -  \,, ,  

il T' 

" L - 2  ~ L - I  

Fig. 1. Schematic picture of the fixed points of the transformations HL ~-~ at a special fre- 
quency. ( 0 )  Attracting fixed points: ~-(mz/I) for n = l  ..... I. ( � 9  Repelling fixed points: 
~+(nz/l) for n =  1,..., l. For n=l, the points coincide [O-+(Tz)=0]. 

All these aspects are closely connected to the behavior  of the Schmidt 
function at the special frequency. I terat ing Eq. (2.19) l -  1 times and using 
2lfl = 0 (mod 2~z), we find 

l 
1 2 v,(~o) = ~ r~ vs(R.~(~0)) + q H(o , )  

l 

-q- '  ~ r,I(-2fl<q)-2afl<O) (3.10) 
a = l  

where 
ra  = q p a  -- 1/( 1 - pt), a = 1,..., I (3.11) 

and the subscript s reminds us that  we are at a special frequency. 
The solution of  this equat ion is a devil's staircase: assuming 

V,(q)) = Vs(0 + ) for 0 < ~o < tp+()~), one finds that  this assumption is con- 
sistent with (3.10). Using this knowledge, one finds that  Vs(q)) is constant  
at the preimage R2;l{[0,  ~ + ( 2 ) ] } ,  and so on. For  a typical situation, a 
plot of V~(q)) at a special frequency is presented in Fig. 2. 

We can calculate H(e)s 2) from (3.10); choosing, for instance, ~0 = 0 +, 

l - k  
H(o)2) = ~ ra(,) (3.12) 

n ~ l  

For  k = 1, this becomes simpler: 

H(co~) = (1 - p ' -1 ) / (1  - p ' )  (3.13) 
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Fig. 2. 

1.0 

0.8  

0 .6  

0.2 

I 
_ V s  

I I r I ~ - -  

I 
f 

[ I l [  1 I l 
g.2 0J, 0.6 

I 1 ~ J ~  
D.6 1.0 

Schmidt function V,(q)) versus against cp/2~ c [0; 1J at the special frequency ~o 2 = 3. 
Here/=3, k= 1; p=0.4, M=2.5. 

This result was first derived by Borland. 19) An expression equivalent to 
(3.1:2) is 

H(co~) = 1 - q2 ~ p.j-~[jk/l] (3.14) 
j = l  

where [ x ]  denotes the integer par t  of  x. 
In the following, we shall need the behavior  of  ~. for ~0 close to (p = 2z 

and q~= ~,+(2). For  R(~/iv~(0) < ~0 < 2~, Eq. (3.10) reduces to 

1 - v ~ ( ~ ) =  r , {1  - v ~ ( R o ( ~ 0 ) ) }  ( 3 . 1 5 )  

where the parabolic t ransformat ion R acts as a translat ion on the variable 
cotan(�89 

cotan[�89 = cotan(�89 - 2 tan 7 (3.16) 

implying that  the solution of  Eq. (3.15) reads 

1 - Vs(2rc - ~o) = exP(�89 In r I cotan ~/cotan �89 

x Po(�89 cotan 7 cotan �89 (3.17) 

where Po is a periodic function with unit period, which the present analysis 
cannot  predict. For  small (p, we have asymptot ical ly  

l - V s ( 2 ~ r - ( p ) ~ e x p ( l n r t c o t a n T q ) - l ) P o ( c o t a n q o  -~ )  (3.18) 

822/45/3-4-4 
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For ~t+()~)< q)< R2joI(@+()~)), Eq. (3.10) has the form 

V,(qo) = r~(,)V,(Rx(qo)) (3.19) 

When M >  Mc (y > Yc), R~. has a derivative larger than unity at ~9+(2): 

d ~ = ~  R~(~o) o+(;a sin 7 sin v(Z) + c o s ( ~ -  7 -  2) 
- - -s--~n 7 ~ n  v~ )  ~--~os(~-Z-- ~---Z) (3.20) 

and the solution of (3.19) is asymptotically 

( ln  q~), 
Vs(q)+O+(Z))~@Pl \ ln~]  qo,l,O (3.21) 

where the exponent ~ reads 

_ In r~(1) (3.22) 
In 

In the critical case ( M = M c ; 7 = V c )  one has ~-+(2)=2,  and, in analogy 
with (3.18), one derives easily 

v~(~o + ~) - Vs(~) 

~exp(~0 lcotan?clnG(l))Pz(~O-~cotanT~.), q0+0 (3.23) 

Again, P1 and P2 are periodic functions with unit period. 
Finally, a similar behavior is present at the band edge (co2= 4). For 

v>  I + � 8 8  1) 1, Eq. (2.16) becomes 

Zs( -1  + 1 /v)=PZs[-1  + 1/(v-- 1)] (3.24) 

The solution is, for v >i ~(M-- 1) - 1, 

Z , (  - 1 + 1 /v )  = p ~ P 3 ( v )  (3.25) 

where P~ also has unit period. This is indeed an exact relation. Related 
properties of H(co2), to be derived later, are only asymptotic expressions. 

4. INTEGRATED SPECTRAL DENSITY NEAR SPECIAL 
FREQUENCIES 

4.1. Lifshitz Singular i ty  at the Band Edge 

The behavior of the integrated density of states H(~  2) near special fre- 
quencies is very similar to its behavior at the band edge. Another way of 
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expressing this is to say that o)2= 4 is also a special frequency, namely with 
k = 0  and I =  1, so that /~=rc [see Eqs. (2.3), (3.1)]. We therefore briefly 
discuss the argument of Lifshitz (1~ for the behavior of 1 - H(co 2) as co 2 T 4. 

Lifshitz makes the following observation: an eigenfunction with fre- 
quency close to co2= 4 can only be supported by a large succession of light 
masses. Let 

0)2 = 2 + 2 cos[rc/(N+ 1)] (4.1) 

with N integer and N~> 1. Such a frequency corresponds to an eigenmode 
a, = sin[(n - no) 7r/(N+ 1 )] of a succession of N light particles if they were 
enclosed between infinitely heavy particles (fixed walls) at no and 
no + N +  1. The fact that the heavy particles are not infinitely heavy is not 
important, since they damp such a mode anyway. The probability of 
occurrence of such a succession of particles is q2pN, and by definition the 
probability of occurrence of eigenvalues between co2 and o)2=4 equals 
H ( 4 ) -  H(co 2) = 1-H(co2) ,  so we have 

1 - H(co 2) ,.. pNq2 (4.2) 

Eliminating N from (4.1) and (4.2), one finds the Lifshitz singularity 

1 - H ( c o z ) ~  p~(4-~ e x p [ - ~  Ilnpl (4-- CO2) -1/2] (4.3) 

Considering N as a wavelength, the square root arises because the disper- 
sion curve co = sin(�89 is flat at the band edge. 

In Fig. 3, we present the interesting part of the eigenfunction with co2 
closest to 4 in a random chain of 1024 particles. The mass ratio is M =  4 

0.2 

O0 

- 0 . 2  

-O .k  

a l l  

0.~, 

o 

I 
r / I I I -~-- I I 

�9 �9 ~.I z: 3 . 9 0 3 3  

O 0 0  0 0 0 � 9  

�9 r l  
I I I I I f I I 

71 N a2 a~, ~ . 90 92 ~, 

Fig. 3. Eigenfunction of a random chain with 1024 particles with p = 1/2, M = 4. The eigen- 
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and p = q = 1/2. The eigenfunction is evaluated by exactly diagonalizing the 
1024 x 1024 matrix, using the stable QR algorithm. One observes that the 
eigenmode indeed is localized on light masses. Their number N = 9 should 
be compared with the theoretical prediction N =  9.06 from Eq. (4.1) and 
the value of co 2. 

4.2. To the Right of  a Special  Frequency 

For frequencies to the right of c%, we define co = 2 sin �89 by 

f l  = rt ( l - k ) / l + s =- f l  s + s (4.4) 

Now the transformation Rt~ associated with one heavy and l - 1  light 
masses becomes elliptic, since we are inside the spectrum of an ordered 
chain with unit cell HL z 1. Also, the transformation connected to a 
sequence of l light masses (q) ~ q0 - 2ls) is elliptic, but we shall soon show 
that this is irrelevant. The matrix Q~ is advantageously written as 

-+ Q~/~ = cos # + i sin/~ A 

where 0 < # < ~r is defined by 

(4.5) 

cos(y + l s )  
cos ~ - (4.6a) 

cos y 

and 

l ( - s i n ( 7  +Is)  - s i n  7 e+'~] 
A - sin # cos y \s in  7 e ,t~ sin(y + le) ] (4.6b) 

The sign in (4.5) is chosen such that cos/~= +1 if s = 0 .  Because A 2 =  1, 
the Nth power of Q~ has the form (4.5) with/~ ~ N/~. An eigenfunction can 
be found if the phase ~0, starting from cpN+I--0, and then being attracted 
by several of the Q ~  ( a =  1 , . . . , I -1) ,  is able to pass zero and reach 
O+( rc -2 ) .  From that point, it can be repelled further in the clockwise 
direction if the next succession of masses is HL  "(~- l) 1. From Eq. (4.5) it 
follows that about N -~ rc//~ transformations Rt~ are able to do the job: rc/2/~ 
are needed to reach zero, and the other rc/2/~ to get away from zero over 
any fixed angle. From (4.5) it follows that N ~ r ~ / # ~ s  -1 /2  for small s. 
Repeated transformations related to l light masses can also move the phase 
away from zero. But about 1/s such successions are needed, which is much 
more. Hence, the s dependence of these transformations may be neglected. 
Consequently, near the special frequency the integrated density of states 
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will be determined to leading order by ~/# successions of one heavy and 
/ -  1 light masses: 

H ( ~ o 2 ) - - H ( c o z ~ ) " ~ r ~ e x p { - C +  Jlnr,l (co2-co~ 2) ~/2} (4.7) 

where r t = qpt l/(1 - pl) and 

C+ = ~ cos(1/~)[�89 - I)]  -~/2 (4.8) 

The occurrence of the probability factor qpl-1 is obvious. The factor 
(1 -pZ)  i comes from the fact that, after each subsequence HL z l, a sub- 
sequence L t or L 2t or L 3t, etc., may be present because they hardly influence 
the phase. The probability for occurrence of such situations is 
1 + p ~ + p 2 t +  .. .  = ( 1 _ p l ) - ~ .  Note that a square root of frequency has 
entered (4.7), because the dispersion (4.5) of an ordered chain (HL/-  1)~ is 
quadratic for co 2 + COs 2. 

We have made a numerical test of Eq. (4.7). The function Z(u; co 2) and 
the integrated density of states H(co 2) have been computed by a method, 
already used in Refs. 11 and 25, which consists in enumerating the 2" 
possible values of the displacement a, (assuming the boundary conditions 
a o = 0  and al = 1). The data presented in the following correspond to 
n = 18 (2" = 262,144). 

For different values of p, k, l, and M, we have plotted the numerical 
and analytical values of C+. The result is given in Fig. 4; very good 
agreement with (4.8) is found. Also, the behavior (4.7) is found to be 
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Fig. 4. Numerical versus analytical values of C+ for various values of k, l, M, and p. 
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M = 5, p = 0.1. The  s t ra ight  line has  a slope C+ In rl = -3 .0201 ,  predicted by Eqs. (4.7), (4.8). 

modulated by a periodic function of (e)= - co~)- 1/2, as was already announ- 
ced in Eq. (1.1). We found that the product of C+ and the period equals 
unity (within a few percent). Figure 5 shows a plot which illustrates the 
oscillatory behavior of H ( g o  2) in a typical case. In Fig. 6, we present the 
interesting part of an eigenfunction for ~o= = 2.0279 > co, a = 2 for our chain 
with 1024 particles and M = 4 .  One sees that the eigenfunction is 
appreciably different from zero almost only for successions of one heavy 
and one, three, or five light masses. This agrees with the argument given 
above, since.l= 2, and hence l -  l (mod 2 ) =  1, 3, 5 ..... In total, five of these 
successions are present, to be compared to (~//~)-  1 = 6.55 from Eq. (4.6). 
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Also observe that the nontrivial part of the eigenfunction is enclosed 
by one heavy mass on the left and one heavy and two light masses on the 
right. Since l =  2, the transformation L 2 is close to unity, and the situation 
is almost the same as in the case where there is a heavy mass on both sides. 
According to the argument given below Eq. (4.6), the predicted sequence 
should be HL a~ Since l = 2 ,  k = l ,  one finds from Eq. (3.3) that 
a(1) = l. Thus, the predicted form of the borders of the central part of the 
eigenfunction indeed is present in the case of Fig. 6. 

We finally comment on the exponential behavior of the integrated 
density of states reported by Gubernatis and Taylor. (12) These authors fit 
their data to a relation of the form (4.7), and find the value 1.482 for the 
constant in the exponent. When we employ Eq. (4.8) we find the value 
2.739 for the same quantity. The reason for this discrepancy may lie in the 
fact that they have only about ten data points and ignore the periodic 
structure. 

4.3. To the Left of  a Special  Frequency: Crit ical  Mass Ratio 

The situation to the left of a special frequency in the critical case 
( M =  Me) is very similar to the one on the right. We now have 

fl = fi ,  - e = r e ( l -  k ) / l -  e (4.9) 

and the transformation R~(1)~ changes from parabolic to elliptic, just as Rz, 
did in the previous case. A decomposition for Q~I1)~ of the form (4.5) 
introduces t~ defined by 

cos/.t = _+cos(y + gtf l) /cos y (4.10) 

where a = a(1) satisfies aft = 7 r / l -  gte l-see (3.3)], and the sign is such that 
# = 0  for e=0 .  In solving for #, one also has to keep in mind that ? 
depends on e [see Eqs. (2.6) and (4.9)]. For small e the result is 

where 

/~= [2 tan G ( a + b ) e ]  1/2 [1 + O(e)] (4.11a) 

dv sin0z//) 
b = 2 ~  = (4.1 lb) 

8, s in(kTt / l )  

Following exactly the same reasoning as in Section 4.2, we conclude that 
the eigenfunction must be localized on sequences of one heavy and 
( d -  1)(rood [) light masses. It must be enclosed between sequences of the 
form HL u(2)- 1. As a result, we find 

H ( ( . o 2 ) - H ( c o 2 ) ~ e x p { - C c r _  it (ln r~{ (~o2- co2) -1/2 } (4.12) 
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where 

C crit ~- rc[sin(7~k/1) tan(rc/21)/(6 + b)] 1/2 (4.13) 

and 

r~=qpa-, ( l_  pt)-I 

In Fig. 7, we present data comparing numerical results for CZ it, determined 
by analyzing H(co 2) using Eq. (4.12), with the prediction (4.13). We have 
considered situations with various values of k, l, and a(1). The agreement is 
again very good. Also here the behavior (4.12) is found to be modulated by 
a periodic function of (co~- co 2)- 1/'2. The product of C crit and the period is 
equal to unity (within 2%) in all cases. Figure 8 illustrates the oscillatory 
behavior of H((o2). 

In Fig. 9, we present the eigenfunction in a chain with 1024 particles 
and a mass ratio M =  4 for o~2= 0.9895. The value co 2 = 1 corresponds to 
k = 2, l = 3. This implies d = 1, and our argument predicts that the eigen- 
function can only be nonvanishing for subsequences of the form H, HL 3, 
HL 6, etc. One observes that only the first one is present. In counting the 
number of successions, one has to keep in mind that, since a (2)=  2, the 
succession HL ends the eigenfunction. Hence we find N =  14, to be com- 
pared with N =  ~ / # -  1 = 14.30 from (4.10). It is rather unexpected to find 
an eigenfunction located almost only on heavy (but not lazy) masses! 
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4 , 4 .  T o  t h e  L e f t  o f  a S p e c i a l  F r e q u e n c y :  G e n e r a l  C a s e  

This  case tu rns  ou t  to be  the  m o s t  c o m p l i c a t e d  one.  W e  t ake  a g a i n / ~  

as in Eq.  (4.9). T h e  on ly  e l l ip t ic  t r a n s f o r m a t i o n  p r e sen t  is L/: (p-* ( p -  2le. 

A na ive  ve r s ion  o f  the  a r g u m e n t  for  the  r e l a t ed  s i t ua t i on  n e a r  the  b a n d  

edge  sugges ts  t ha t  we s h o u l d  f ind o u t  for  wh ich  N 1 the  t r a n s f o r m a t i o n  con-  

nec ted  to  H L  Nl b e c o m e s  ell iptic.  Bu t  a shor t  c a l c u l a t i o n  shows  tha t  

H L ' - I H L N '  (a = 1,..., l - 1 )  still r e m a i n s  h y p e r b o l i c :  m u c h  m o r e  t h a n  N~ 
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case M = 4 is equal to the critical mass ratio. 
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light masses are needed. To find the correct number, let us look at Fig. 1. 
Suppose that the phase is in the sink interval, close to ~ (2). Only if it is 
moved in the counterclockwise direction and has passed ~ +(4) and if the 
next transformation is Rar will it not be attracted back toward the sink 
interval [0; ~ (4)]. Then it is possible to have an eigenfunction. The angle 
~ + ( 2 ) - ~ 9 - ( 2 )  equals 2v(2) [see (3.8)]. Hence, a succession of 
N ~- 2v(2)/2l~ segments of 1 light particles is needed. We thus have 

H(o)2)_ H(o)2) ~ (p,)N (4.14a) 

= e x p { - C  genLlnp[(o)2 o)2)-l} (4.14b) 

where 

C~ n = 2v(2) sin/?s (4.15) 

The factor v(2) is defined by Eq. (3.9): 

cos v(2) = sin(7 + n/l)/sin 7, 0 < v < rc (4.16) 

Note that the exponent of 2 (o)s-  c~ in (4.14) is - 1 ,  to be compared with 
-1/2 in the critical case. This is not a contradiction, because the factor 
v(2) vanishes when the mass ratio approaches its critical value. The reason 
why the exponent equals - 1 is that here the relevant dispersion relation is 
just that of a chain with only light particles [Eq. (2.3)], and it is not taken 
at its band edge, so that o) 2 is linear in ~. 

In Fig. 10, we present data comparing the numerical values of C~ n 
with Eq. (4.15). We have taken various values of k, l, and M. Again the 
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Fig. 10. Numerical  versus analytical values of C~ n for various values of k, l, M, and p. The 
point GT  denotes the result for a related model studied by Gubernat is  and Taylor/~21 
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(4 .15) .  

agreement is good. The point GT marks the outcome of a similar 
calculation performed for the electronic model studied by Gubernatis and 
Taylor. (12) These authors fitted their results to a behavior of the form 
(4.12). We have redone their calculation, and find that it can be perfectly 
described by the equivalent of Eq. (4.14), adapted to their model. 

Also here we found an amplitude periodic in (0) 2 - c o  2)- 1. Its period r 
satisfies r c g  en = l, within small errors. The occurrence of the factor I here is 
expected from (4.14a), where, instead of p, p/ is the relevant factor. 
Figure 11 illustrates this behavior in a typical case. 
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Nevertheless, we expect that, in front of the behavior (4.14), there 
should also be a power ((D2--(D2) 2~, where ~ is given by Eq. (3.22). Since 
the argument is not complete, we will not elaborate on it here. We only 
note that numerical results seem to confirm the value of ~ given in (3.22), 
within large error bars. 

In Fig. 12, we present a plot of an eigenfunction of the same chain as 
in previous sections, with mass ratio M = 4  and 1024 particles. The fre- 
quency e92 = 1.6779 is closest to co s2 __ 2. Thus, k = 1, l = 2 in this situation. 
One clearly observes that the eigenfunction is mainly centered at clusters of 
l = 2 and 31 = 6 light particles. The latter number should be compared with 
v(2)/e - 1 = 6.22. 

5. S U M M A R Y  

In this paper, we have discussed several aspects of special frequencies. 
We have given physical arguments explaining exponential singularities in 
the integrated density of states H(o32) near special frequencies (Section 4). 
These predictions are confirmed by extensive numerical calculations and by 
the properties of eigenfunctions. 

In the numerical calculations, it was always found that the exponential 
singularities are modulated by periodic functions, with a period simply 
related to the exponent of the singularity. 

We aim to publish in a future paper an analytical derivation of the 
results of Section 4. The main idea will be to relate the behavior of the 
integrated density of states H(co 2) near a special frequency co s to scaling 
properties of the Schmidt function V~(q)) at the special frequency. 

Nevertheless, several related questions will remain as difficult open 
problems, e.g., a deeper understanding of the structure of the periodic 
amplitudes. 
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NOTE ADDED 

While completing this work, we received a preprint "Special energies 
and special frequencies" by M. Endrullis and H. Englisch. Although they 
use a slightly different approach and have a different interest, they derive 
essentially the same results for the exponents as we do in Section 4 with 
our "physical arguments." In particular, in the case studied by Gubernatis 
and Taylor, ~12) their results concerning the exponents coincide with ours. 
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